Double trouble: Numerous puzzles

Tim Sprod

University of Tasmania

timsprod3@gmail.com

Abstract

Philip Cam’s Double Trouble can be found in his 1998 collection Twister, Quibbler, Puzzler, Cheat. This story is an especial favourite of mine, which I have used successfully with classes from mid-primary to senior secondary (and with adults).

This paper consists of two parts: the story in full; and an exploration of the philosophical background to many of the ideas contained in the story, including some references to discussions of the ideas in the philosophical tradition to support facilitators who use the story within a community of inquiry. I will consider three central issues in some detail, and four other emergent issues more briefly. In conclusion, I offer some more general thoughts as to how facilitators can prepare for using the story.

Key words

discussion plans, identity through change, mind-body, persons

Double trouble

Philip Cam

Every time that Chester’s personal robot Algernon was taken to be serviced, one component or another seemed to need replacing. Although Chester was seldom aware of anything wrong with Algernon, and the robot never so much as forgot the bath salts or spilled a cocktail, he had no doubt that the robot company knew best. For Chester realised that Algernon would never complain if some part of him were wearing out. It would be beneath his dignity to admit such frailties and he would suffer in silence. Chester couldn’t bear the thought of that.
As time went by, so many bits of Algernon had been replaced that Chester began to wonder whether the poor old thing had any of his original material left. Almost all of the moving parts had been replaced at one time or another, as had most of the electronic components. Then one day, when Algernon became irritable and quite unlike his usual self, just because he couldn’t find his feather duster, a curious puzzle dawned upon Chester. If all of Algernon’s parts had been replaced, was Algernon really still Algernon—if you see what I mean?

Although Chester was quite puzzled about the matter, he realised that there was no point in raising it with Algernon. What was Chester to do? Ask the robot whether it was Algernon? That would be ridiculous. Besides, Chester knew only too well what the robot would think of such an idiotic question. He could hear its ever-so-polite but superior tone of voice. ‘Am I still Algernon? Most amusing, sir. Very droll. Will that be all?’ Chester hardly wished Algernon to think him a fool.

The longer he thought about it the more Chester realised that he had no idea how to answer the question about Algernon. In the end his thoughts began to run around in circles and he started feeling dizzy. The whole thing made no sense any more, and so he determined to put it aside.

Yet the puzzle about Algernon soon forced itself back upon Chester in the most disturbing way. It happened like this. The next time that Algernon returned from his service, he wore a very smart new black surface coating, with a stiff white front and a crisp bow-tie. Chester was not altogether displeased with Algernon’s new look, but his patience with the robot company had worn thin. There had been nothing wrong with Algernon’s old coat. The company was replacing things quite unnecessarily and charging Chester’s account. That annoyed him. The time had come to pay them a visit.

At the company’s city office there was a large marble showroom displaying their latest robots. Some of the robots were activated, like the doorman who opened the great glass door for Chester and offered to take his hat and coat. The doorman then pointed Chester in the direction of the automated information desk at the other end of the room, where a robot with at least six heads was talking to customers.

As he made his way across the floor, Chester was so taken by the sight of the robots displayed around the room that he almost bumped into a cleaner robot who was busy polishing the marble.

‘Sorry, my man,’ said Chester.
‘Oh, Mr Chester!’ said the cleaner, turning. ‘I am so very relieved to see you, sir. I thought that you would never come.’

Chester was flabbergasted. ‘A ... A ... Algernon?’ he stammered.

Algernon it was. At least, it was a re-assembly of the many parts that had originally been Algernon. As Chester discovered when he finally managed to get the truth out of the manager, the company made a practice of numbering and storing all of the useful components that it replaced during service. These usually became spare parts. But on those rare occasions when the company managed to collect a complete set of parts, the entire robot was rebuilt and sold second-hand or put to work for the company.

The manager insisted that this practice was perfectly consistent with the fine print of the company’s customer service contract. The company had done nothing wrong. All the same, he was most anxious that Chester should accept his personal apology. He even offered to make Chester a gift of the old Algernon, as a gesture of good-will. The only condition was that Chester make no further claims against the company.

Chester agreed to the manager’s proposal, not because he believed that the offer made things right, but out of his feeling for Algernon. Chester would take Algernon home, where he belonged.

The trouble with Algernon began as soon as he arrived home and Chester went to introduce him to the new Algernon.

‘Algernon, I want you to meet ... eh ... Algernon,’ he said, realising at once that he should have thought about what he was going to say. Chester tried at length to explain the difficulty, but it only made matters worse. Before long, the robots became quite unlike their former selves and began to call each other names.

‘Impostor!’

‘Yesterday’s man!’

‘Fancy-pants!’

‘Scrap heap!’

It was all that Chester could do to keep them from coming to blows, with each robot insisting that it was Algernon, while the other robot was a fraud.
The old Algernon suffered the most, poor fellow. Was not he the robot that Chester bought all those years ago? In every particular, the real and original Algernon? Did he not wear the marks of years of faithful service? To think of all that dusting and polishing, of seeing to Chester’s every need, only to have his rightful place—indeed, his very identity—ever so cunningly usurped by another. Surely Chester must see that this fancy new fellow was not Algernon. It was impossible. Sheer madness!

The new Algernon’s arguments were equally compelling. It was ridiculous to suggest that he had silently slipped into another’s shoes. Wasn’t he the robot who had been serviced year after year? It was nonsense to claim that somehow or other a swap had been made. So what if his parts had been gradually replaced? They were his parts, after all. But now, incredibly, this pile of his old discarded parts had got itself together and had the cheek to claim to be him. How outrageous!

Poor Chester! He was in double trouble. He had no idea what to do. The puzzle which he had set aside as a silly and idle fancy had swept back upon him with a vengeance. The problem it posed was real enough, even though he never was able to discover any fact of the matter with which to settle things one way or the other.

The central concept of Cam’s story is often referred to as the ‘Ship Of Theseus problem’, which has roots that go well back into antiquity. Perhaps the first to pose the underlying puzzle, at least as far as we know, was Heraclitus of Ephesus, around 500BC.

The name I just gave to the problem is commonly traced to the writings of the first century Roman, Plutarch, who relates that the Athenian people preserved the ship Theseus used when he sailed to slay the Minotaur, replacing the planks as they decayed. However, he acknowledges that he is telling a story already old, and that ‘this ship became a standing example among the philosophers, for the logical question of things that grow’ (Plutarch 2009), that is: do things remain the same when some parts are changed? Among the philosophers who had been discussing the general problem are, we know, Plato (e.g. in Parmenides) and Aristotle (e.g. in Physics).

Much later, Thomas Hobbes (1655) added a layer of complication to the puzzle. He imagined that all the old, discarded parts were collected, and then reassembled. Now, he asked, which ship is the Ship of Theseus: the one carefully maintained all these years, or the one made of the planks that were replaced?
Cam builds his story on these predecessors. He does, however, add a further intriguing twist that makes the puzzle even more complex and interesting. Instead of an inanimate object—a ship—having its parts replaced, and then having the replaced parts reconstituted, Cam imagines it happening to a robot, Algernon. Immediately, Cam has added issues of personhood, personal identity and the mind-body problem.

This is a heady philosophical mix, and in my experience, intriguing to students (and adults). Moreover, it is an excellent introduction to a course in philosophy, be it formal (such as a pre-university course) or informal (as in a story-led community of inquiry). We dive head-first into some of the most fascinating and intractable problems of metaphysics, which are nevertheless very accessible to our students. As we shall see, Cam’s story also opens up some questions in other areas of philosophy. Let’s look at these puzzles one by one.

In what follows, when we think about Algernon, I shall call him A1 when Chester first buys him, A2 when the continuously updated Algernon gains his new ‘suit’, and A3 the Algernon reassembled from the discarded parts.

1. Identity through change

I have already alluded to Heraclitus’ famous puzzle: is it possible to step into the same river twice? (See also the next section ‘Same and different’). While it might appear, on first glance, that the question is weird, the thought behind it becomes apparent when we consider that the river changes between the first step into it and the second. If it has changed, then it is no longer the same river: it is different. Of course, this problem arises any time any object undergoes change, be it Theseus’ ship, or Algernon with a part replaced. The puzzle can be easily illustrated. For example, you could use a pen to draw a small line. Is the pen now the same as the one you first picked up, given that it has changed: it has less ink now?

There are several possible ways of dealing with the problem, two of which are positions at the extremes. Considering Algernon, on the one extreme, we can say that A1 would be the same as A2 if and only if A1 and A2 were exactly the same in every respect. Since they are not (parts have been replaced), then A2 is not the same robot as A1. Nor is A3 the same as A1 because, although A1’s parts are also in A3, there has been wear and tear. We can only say something remains the same if no change takes place in it at all.

The other extreme is to say that, as long as there is some continuity over time, an object
remains the same object even though changes are happening. A1 is the same as A2, while A3 lacks the necessary continuity. There are problems with both these solutions, though. In the first, it seems that we are virtually never justified in claiming some object is the same object at a later time—yet we often do, and we seem justified in doing so. The second solution allows us to, but it seems to commit us to claiming an object is the same object when clearly it isn’t. While we might want to say that A1 and A2 are the same, do we also want to claim that if, following serious breakdown, A2 was melted down and the materials used in a new robot, it was still Algernon?

There is possibly a middle way, if we distinguish between essential and accidental properties, a distinction Aristotle (1998) made in the *Metaphysics*. Essential properties are ones an object must have to remain the same, while accidental properties are ones it just happens to have but which can change without making the object a different one. Put simply, an object remains the same if its essential properties stay the same, even if the accidental ones change.

What might the essential property or properties for Algernon be? Deciding this can be difficult. That he serves his master? If all robots are freed, as slaves once were, this would imply that Algernon is now a different robot. That he remains functional? If he is turned off for repairs, again a different robot is turned on. Accidental properties do seem easier to identify. An example might be whether his ‘suit’ is scratched.

An alternative to a focus on properties is to distinguish essential from accidental parts. In this view, we might say that there is one, or several, parts of Algernon that he must retain to be Algernon. We will look more closely at what these parts might be in Section 4 below.

John Locke discussed identity in some detail in his *Essay Concerning Human Understanding* (1689, chapter XXVII). His basic principle is that for something to be the same thing, it must have had the same origin in space and time. As far as inanimate objects are concerned, he had a very tight account:

> if two or more atoms be joined together into the same mass, whilst they exist united together, the mass, consisting of the same atoms, must be the same mass, or the same body, let the parts be ever so differently jumbled. But if one of these atoms be taken away, or one new one added, it is no longer the same (1689, section 3).

We can see that this accounts for the Ship of Theseus (it is not the same ship as soon as
any atoms are removed). However, as Locke has a different account for living things (as we shall see in 3 below), the application of his ideas is not so clear with Algernon. Should we consider Algernon as an inanimate object, or an animate one? How to distinguish the inanimate from the living is a puzzle in itself: one I lack space to go into.

Other, more technical, potential solutions to the identity problem have been advanced by philosophers (Gallois, 2016), and it is possible that one of your students might come up with a version of one of them. However, the considerations above should contain enough food for thought to keep everyone occupied even if they don’t.

Note that two similar, but distinct, questions may arise in discussion: is this the same object it was (metaphysics) and how do we know it is the same object (epistemology). It can be easy to switch from one to the other, so some vigilance is needed. Here’s an illustration of the difference: say someone takes a 20c coin, shows it to you, transfers it behind their back, fiddles about a bit to retrieve another 20c coin, and shows you one in each of their hands. Which coin is the same as the one you saw originally? Even if it is impossible for you to know for sure which coin is the same one, one of them is the same.

1.2 Meanings

Above, we have been taking it somewhat for granted that we know what the words we are using mean. A common approach to the problem of identity through change is to look more closely at the way the words ‘same’ and ‘different’ are working in the statement of the puzzle. Consider these two sentences: ‘I have the same phone as you have’, and ‘This is the same phone I showed you yesterday’. It appears that the word ‘same’ has two different meanings. In the first sentence, ‘same’ is indicating that the two phones have lots of properties (make, model etc.) in common, while in the second, we are claiming that the phone I show you today is the exact one I showed you yesterday.

Philosophers have called these two senses of ‘same’, respectively qualitatively the same (sharing the same qualities or properties) and numerically the same (being one-and-the-same). In the problem of identity through change, it is numerical identity (sometimes called strict identity) we are considering. Keeping this distinction might help introduce more clarity into the discussion.

As we shall see in Section 3 below, Locke warns us that we have to be equally careful with the word ‘identity’: ‘to conceive and judge of it aright, we must consider what idea the word it [i.e. identity] is applied to stands for: it being one thing to be the same
substance, another the same man, and a third the same person’ (1689, chapter XXVII). We have considered the same substance—i.e. inanimate object—and will look at the other two later. But first, let’s consider what Locke means by ‘person’.

2. What is a person?

In the story, Algernon is presented as if he were a human being, yet we know he is a robot. We owe to Locke the idea of using the term ‘person’ as a wider one than ‘human being’. Locke’s thought experiment is to consider a parrot that can hold an intelligent conversation. Clearly, the parrot is not a man/human being, yet it is a ‘thinking intelligent being, that has reason and reflection, and can consider itself as itself, the same thinking thing, in different times and places’ (1689, chapter XXVII). Locke proposes to use ‘person’ for such a being; a proposal which philosophers ever since have generally followed. So, if your students wonder if Algernon is a human (clearly not, as humans have to have features he lacks: flesh and blood, parents, shared DNA …), it is probably better to encourage them to rephrase the question in terms of being a person.

When we try to set out the conditions for being a person, several possibilities arise. Perhaps there is some one feature that all persons have. Locke’s definition comes close to that, although it may be an example of the second possibility: that all persons share a number of necessary and sufficient features. That is, a person must have all the features (each feature is necessary), and taken all together, that bundle of features is sufficient. Finally, we might follow the suggestion of Ludwig Wittgenstein (2001), that such definitions are a matter of family resemblance. Members of the same family might share features from a certain pool of family looks (e.g. hair colour, nose shape, stature, eye colour, etc.), but not all members have all the features. There is partial overlap, and possibly there is not one specific feature they all have.

In trying to determine whether Algernon is a person, then, we may first have to decide whether there is one feature, a group of necessary and sufficient features, or a cluster of partially shared features that separate out persons from non-persons.

2.1 Can a robot be a person?

If we have decided how to determine if any given being is a person or not, we can turn
our attention to the question as to whether robots are the sort of things that can be persons. Clearly, the account we have of what makes a person is important.

Let’s use Locke’s definition for a start. While it is a little wordy, it seems to boil down to two (or maybe three) features: intelligence and self-consciousness (including consciousness of memories). Are robots intelligent? Perhaps at the moment we would not want to say so. While they can calculate rapidly—more rapidly than humans—the limitations on their ability to handle complex or ill-defined issues across multiple domains probably rules intelligence out. However, it is quite conceivable that, in the future, robots will be able to act as Algernon does, in ways that we would be happy to call intelligent. In particular, if a robot could pass a Turing test (Turing, 1950)—that is, if after free and wide ranging, but physically remote, discussion, a human could not tell if the robot was another human or not—then we would probably have to concede that the robot was intelligent.

A more difficult to decide matter exists in determining whether a robot is self-conscious. We could presumably program an intelligent robot to respond as if it were conscious of its ‘self’, even though it was not. It is hard to see what analogue of the Turing test could separate feigned self-consciousness from the real thing. One’s consciousness of oneself seems to be an internal feeling, lacking in public manifestations that could not be mimicked. We are in the territory of what David Chalmers (1995) calls the ‘hard problem of consciousness’.

However, there are other problems with Locke’s account that arise when we look at other borderline cases. Is a foetus, or a new born child, or someone in a deep coma (persistent vegetative state) a person? It would seem not, according to Locke; a conclusion with which Peter Singer (1979) agrees. However, it seems that most would like to say that at least some of these examples are persons.

Consequently, we need to consider other ways of determining what a person is, and whether a robot could be a person. Perhaps we could drop the ‘self-conscious’ requirement, and just ask for intelligence. Or maybe we need to add other requirements, such as the capacity to make moral decisions. Or consider whether there are degrees of personhood, so that a robot (or a new born) is a partial person, or a potential person. Clearly, starting with the question as to whether a robot can be a person can lead into wider questions about other candidates to be persons.
3. **Personal identity over time**

By combining Hobbes’ version of the Ship of Theseus problem with the issue as to whether a robot can be a person, Cam has very cleverly led us into considering personal identity over time—a special case of the problem of identity through change.

As we saw, Locke developed quite a strict requirement for an inanimate object to retain identity over time: it must not change in any way. However, he went on to consider living things, such as oak trees, horses and humans. He argues that the same principle applies to all these cases: if there remains a coherent body, having a common life under a central organisation, then identity is maintained across that life, be it acorn to oak, colt to horse or baby to old man.

Yet he makes an interesting move at this point: he draws the distinction we have seen above between being a human being, and being a person. To be a human being, you need to have the appropriate type of body, but to be a person, you need certain psychological properties. Not only humans can be persons: a robot like Algernon might qualify. Furthermore, he claims the conditions for being the same person over time are different from those for being the same human animal.

Memory plays a central part in Locke’s account: ‘in this alone consists personal identity ... as far as this consciousness can be extended backwards to any past action or thought, so far reaches the identity of that person’ (1689, chapter XXVII, section 9). It is the first person memories I have of past events—memories, that is, of those events happening to me—that link together me as a child with me as an adult. Provided there is an appropriate linkage of memories, the same person may continue in a different body: for example, though reincarnation.

It is intriguing to try to apply Locke’s distinctions to the Algernons. It would seem that, as A2 can remember being A1, then A2 is the same person as A1. But wait: A3 can also remember being A1, and hence A3 and A1 must also be the same person. Yet A2 cannot possibly remember being A3, nor can A3 remember being A2, so it seems that we are forced to concede that A2 and A3 cannot be the same person.

This leaves us with a problem. Intuitively, it would appear that if teenage Tim is the same person as baby Tim, and adult Tim is the same person as baby Tim, then teenage Tim and adult Tim must be the same person. In more technical language, identity is a transitive property. Yet, in Cam’s story it seems that what started as one person—A1—has turned into two non-identical persons. Is that possible? If there are now two persons
A2 and A3, are they both different persons from A1 (despite Locke’s account implying each of them is the same person as A1), or is one of them really the same person as A1, while the other is merely an imposter? Of course, this is exactly what A2 and A3 believe—all they differ on is that they each claim to be the real A1.

Say we agree that we now have two new persons A2 and A3, neither of them sharing the identity of A1. When did these new persons appear? For A3, the answer might seem to be that it happened when the old parts were reassembled. But what about A2? Since he has been serving Chester continuously, there does not seem to be any point at which a new person can suddenly appear. Does this support A2’s assertion that it is he who is really identical to A1?

Yet A3 is made up of parts that were all also parts of A1, whereas none of A2’s parts were in A1. If Locke is right, then the same person can appear in different bodies—so A2 is A1 in a different material body (as we ourselves are, given the ongoing replacement of our cells over our lifetimes). Nevertheless, it seems strange to deny status as the identical person to two beings that are materially pretty much the same—especially as A2 can remember being A1.

So we may be being pushed towards the view that it is possible for one person to turn into two. Again, though, we can wonder when this split happened. Was it when A3 was reassembled? Or was it when the first part was replaced—but where was A3 at that time?

Whichever way we turn, we encounter problems. The answer to Cam’s puzzle is far from clear. For an entertaining and accessible discussion of the general problem, using a series of thought experiments similar to Cam’s Algernon story, Stephen Law’s *Brain Transplants, ‘Teleportation’ and the Puzzle of Personal Identity* (in Law 2003, ch 22) is excellent.

4. **Mind-body problem**

The mind-body problem is most likely to arise if students consider the idea that there is some part of Algernon which is essential to him remaining the same. The most common suggestions include the electronic equivalent of the brain—some will identify this as the central processing unit (CPU) or, less specifically, the main chip. Others may refer to the memory chip (random access memory or RAM). Yet others may refer to the master program—the software that Algernon runs—or the memories encoded in RAM.
Generally, these students are working from an understanding that there is a distinction between the mere body of the robot, and the part that controls it.

The parallel problem in human beings is the mind-body problem. Is our mind merely some state of our body—and thus a purely physical thing—or is it a separate, non-physical entity, which could be called the soul? Rene Descartes (1984) concluded, in his Meditations, that while he could doubt that his body exists, he could not doubt that he was thinking, and therefore that he existed (‘I think, therefore I am’). Hence, a person is not their body, but that thing which thinks: their soul.

Students who claim that a specific chip or component is the essential ‘core’ of Algernon may be putting forward an analogous argument to those who claim that our brain is our mind. Those who appeal to software or memories stored on chips might be thought to be—in some ways—more like dualists, making a distinction between the physical body and the non-physical soul. Yet maybe they are not: is software non-physical?

5. Part-whole issues

The robot company gradually stored all the old parts of Algernon it had replaced during repairs. Presumably, they were scattered throughout the spare part warehouse; eventually, all the original parts were there. At some stage, these were gathered together in one place, ready for reassembly.

When all the parts were in the warehouse but scattered on different shelves, was Algernon (A3) in the warehouse? If they were all gathered in a box for reassembly, was A3 in the box? Or did A3 only appear when the parts were all put together? But then, surely we would not need all the parts; A3 was there when the main parts had been assembled, even if some fingers and toes were yet to be attached.

These thoughts relate to the relationship between a compound object and the constituent parts. Is there more to a complex entity than just the bits that go together to make it? Are the relationships between the parts as important—maybe even more important—than the parts themselves?

Similar questions can arise if we are considering A1 being gradually refurbished. If A2 is a different robot from A1, then when does the change happen? One view would be that A1 becomes A2 when a certain proportion of the parts are changed—50%, for example. Another might be that there is some essential part; once that is replaced, we
have a new robot. Possibly we have intermediate states where the robot is 90% A1/10% A2, with the A1 proportion gradually decreasing while the ‘A2-ness’ increases. This last solution does seem weird, though. Can we have a being that is part one person and part another? The antithesis of this view might be that a new person is created every time a change of any sort happens.

Of course, all these considerations can be applied not just to Algernon, but to us.

6. Reason and emotion

Cam portrays the Algernons as having emotions as well as reasoning. Robots in fiction are often presented as if they were humans in almost every way, yet it is very doubtful if present day robots could be seen as having anything like emotions. Rather, they respond according to the outcomes of the calculations they have been programmed to make. This can be seen as a purely logical process, and robots can be considered to be cold rationalists.

Of course, a robot could be (and some have been) programmed to simulate emotions. But a simulation is not the real thing. Emotions (as the name hints) can motivate and move us; they play a role in the decisions we make and actions we take.

Several issues arise here (though I do not have room to expand on them). Firstly, could suitably complex and advanced robots not merely simulate, but have and feel emotions? Or is there something special about living beings when it comes to emotions? Secondly, is it possible to be truly rational and yet not have emotions? Robert Solomon (2003) is among the philosophers who argue that emotions are a form of judgement, and that human-like intelligence is impossible without them. Opposed to this view is what might be seen as the common-sense view: that emotions interfere with reason, and ought to be excluded as far as possible if you want to think clearly. So what role do emotions play in our lives?

7. Business ethics

The robot company claimed that they had done nothing wrong, referring to the fine print in the contract. Nevertheless, they apologised, raising a number of ethical questions. Why would you apologise if you have done nothing wrong? If an action is
legal, does that mean it is morally OK? What is the relationship between the law and morality? Ought companies to be moral, or are they only obliged to stay within the law? If they ought to be moral, is this because it is good for business, or because morality is binding on companies as well as individuals? What makes an action moral or immoral? Sadly, I have little room for dealing with these questions here.

Conclusion

Clearly, Cam’s brilliantly executed story provides many paths into rich and fascinating philosophical puzzles. Indeed, there are others I had to omit due to space limitations. Nor—despite this being my original intention—have I had room to provide more specific guidance for facilitators in how to unpack and develop the issues mentioned above, such as by providing discussion plans and exercises. I think it a great pity that, unlike for virtually all the other stories Cam has written over his illustrious career, the ten stories in *Twister, Quibbler, Puzzler, Cheat* have largely to stand alone (although there is a brief two page mention of the main themes from *Double Trouble* later in the book).

A few thoughts on such support. In my view, the essence of a good discussion guide is not to decide in advance a series of questions to ask, in order, as the class explores a question they have raised. Rather, a discussion guide is the attempt of its author to think through what sorts of moves, hints or questions will encourage the students to move in their discussion from careful consideration of the particulars of the story through gradually more abstract stages, to a consideration of the deep underlying philosophical issue at hand. Here is a sketch for a discussion plan from section 2 above—what is a person?

1. Do you think Algernon is a human being? Why, or why not?
2. Do you think Algernon is a person? Why, or why not?
3. Is being a person different from being a human being?
4. If a robot like Algernon can be a person, what would make him a person?
5. Is being a person about what you look like? Is it about how you can communicate? Is it about how intelligent you are? Or is it something else?
6. Think about the attributes for personhood that have been suggested, and how they would apply to the following beings: a new born baby; a man who is sleeping; a
woman in a coma; a chimpanzee who has learned sign language; an alien from Mars.

7. Is there one attribute that all persons must have? What do you think it is?

8. Could it be that all persons have to have several attributes in common? Which ones?

9. Might it be that some beings are partial persons—that personhood is a matter of degree? What would be an example of a partial person? Why?

If the author of the story provides such discussion plans, it does not absolve the facilitator from needing to explore the issues in advance, so as to be properly prepared to think on their feet. In the absence of such support, a facilitator must do this preparatory work themselves. My notes above are intended to assist a facilitator in this process.

For advice in how to develop discussion plans and exercises for yourself, who would be better to send you to than Philip Cam (1995) himself—see his chapter Preparing discussion plans and other aids. There could only be one person, perhaps: Matthew Lipman (1996), the inventor of philosophical discussion plans.

I wish you and your students many happy hours puzzling over ... what exactly? Algernon? Or should I say ‘the Algernons’? That’s for you to decide.

References

Cam, P (1995) Thinking together: Philosophical inquiry for the classroom. PETA/Hale & Iremonger, Sydney, NSW.

Double trouble: Numerous puzzles

